Somatostatin is a hormone that inhibits the release of insulin and glucagon from the pancreas, inhibits growth hormone release from the pituitary and reduces gastric secretions. The half-life in plasma of native somatostatin is less than 3 minutes. It is rapidly degraded by peptidases. As a consequence, somatostatin analogs with improved bioavailability, as well as receptor specificity, are currently being sought.
Somatostatin and its analogs are likely to be involved with treatment of various diseases. The number and variety of diagnostic and therapeutic uses for SS analogs, especially for receptor-specific peptidomimetic and non-peptidic receptor-specific ligands have proliferated.
Numerous tissues in the human body express somatostatin receptors including, but not limited to: (1) the gastrointestinal tract, (2) the peripheral nervous system, (3) the endocrine system, (4) the vascular system, and (5) lymphoid tissue, where the receptors are located in germinal centers. In all these cases, somatostatin binding is of high affinity and specific for bioactive somatostatin analogs. After binding of ligands to somatostatin receptors, the agonist-receptor complexes are internalized by cells. This property is important practically, and constitutes the basis of localization and treatment of tumors which over-express somatostatin receptors.
Somatostatin receptors are also expressed in pathological states, particularly in neuroendocrine tumors of the gastrointestinal tract. Most human tumors originating from the somatostatin target tissue have conserved their somatostatin receptors. It was first observed in growth hormone-producing adenomas and TSH-producing adenomas; about one-half of endocrine inactive adenomas display somatostatin receptors. Ninety percent of the carcinoids and a majority of islet-cell carcinomas, including their metastasis, usually have a high density of somatostatin receptors. However, only 10 percent of colorectal carcinomas and none of the exocrine pancreatic carcinomas contain somatostatin receptors. The somatostatin receptors in tumors can be identified using in vitro binding methods or using in vivo imaging techniques; the latter allow the precise localization of the tumors and their metastases in subjects. Because somatostatin receptors in gastroenteropancreatic tumors are functional, their identification can be used to assess the therapeutic efficacy of an analog to inhibit excessive hormone release subjects.
Sources: Textbook of Basic Nursing, Colorado State University